
Closing the Contrast Gap between Testbed and Model Prediction with 

WFIRST-CGI Shaped Pupil Coronagraph 
 

Hanying Zhou*, Bijan Nemati, John Krist,  

Eric Cady, Camilo Mejia Prada, Brian Kern, Iyla Poberezhsky 

Jet Propulsion Laboratory, California Institute of Technology 

4800 Oak Grove Drive, Pasadena, CA 91109 USA 
 

 

ABSTRACT  
 

JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST 

mission:  demonstration of a better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph 

(SPC) and hybrid Lyot coronagraph (HLC) testbeds with WFIRST telescope optics.  Challenges remain, however, in 

the technology readiness for the proposed mission. One such is the discrepancy between the achieved contrast on 

testbeds and their corresponding model predictions.  A series of testbed diagnosis and modeling activity were planned 

and (some) carried out on SPC testbed in order to close the gap. A very useful tool we developed was to analyze the 

measured testbed Jacobian and compare with its model version that was used to control image plane speckle pattern. 

The difference between these two is the error in the control Jacobian. When the error, which includes both amplitude 

and phase, was inserted into a separate prediction model with nominal Jacobian, the model prediction became closely 

matching the SPC testbed behavior in both contrast floor and contrast convergence speed.  This offers a new perspective 

and is a step closer toward model validation for high contrast coronagraph. Further Jacobian analysis and modeling 

provided clues to the possible sources for the mismatch: the DM misregistration and the underrepresented testbed optics 

wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that 

high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed 

control model as well as prediction model are being implemented and future works discussed.  
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1. INTRODUCTION 
 

SPC is one of the two baseline architectures in current coronagraph instrument (CGI) design that is under intense 

development as a part of a proposed Wide-Field InfraRed Survey Telescope (WFIRST) mission [1- 5]. JPL has recently 

passed Milestone 5 (MS5) in its series of technology demonstrations in which the contrasts of both SPC and HLC have 

been demonstrated to be better than 1x10-8 over a broad bandwidth (10%) [2, 3]. Challenges remain, however. Among 

them, the discrepancy between the achieved contrast on testbed and its model prediction is of major concern. As shown 

in Figure 1, at the time of MS5 passage,  the average contrast over dark hole (DH) region from several testbed runs was 

around 8.4x10-9 for SPC, while a PROPER [6] based model prediction was close to 2.4x10-9 (with estimated pupil WFE, 

mostly from shaped pupil mask), a roughly 3.5 times in contrast discrepancy. Additionally the contrast convergence 

speed was also vastly different: on testbed it took over hundreds iteration; the model, on the other hand, typically 

achieves its predication in about a few tens iterations.  

 

Model validation for high contrast (e.g. 1x10-9) coronagraph proved to be very challenging in the past, due to many 

difficulties and complications in testbed environment [7, 8]. Fundamentally it is difficult to introduce calibrated effects 

at desired contrast level for test: either too little at ~1x10-10 level, like dead or pegged actuators, dark hole sizes, mask 

errors, etc.; or too much at ~1x10-7 level, like particle spots.  Additionally, poor understanding and estimation of 

incoherent light presented in the speckle complicated the wavefront control and thus limited the achievable contrast on 

the testbed.  As a result, only moderate successes demonstrated in predicting the contrast sensitivity such as occulter 

mask translation, while predicting contrast floor remains to be an elusive goal [8]. 
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To close the performance gap, a number of testbed diagnosis and modeling activity were planned after MS5 passed and 

partially carried out before it was decommissioned shortly afterward. This included examinations of: 1) DM actuator 

poke response, or Jacobian; 2) changes in testbed optics layout (distance) versus model assumed; 3) system WFEs, 

particularly the low order WFE of shaped pupil mask; and 4) distortion in shaped pupil mask amplitude, among others. 

All of these were thought to be potentially sensitive in reaching designed contrast. 

 
Figure 1. At the time of Milestone 5 passage: a) The predicted contrast (blue) is about 3.5x better than testbed 

achieved. b) The predicted contrast convergence speed was at a few tens of iterations, faster than testbed’s hundreds  

 

 
Figure 2. Upper a) SPC testbed layout schematic. FSM: fast steering mirror, OAP: off-axis parabola, 

Bottom: shaped pupil Lyot coronagraph masks used for MS5, b) shaped pupil mask (SPM), c) occulter 

mask, and d) Lyot stop mask; testbed has circular entrance pupil 
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The first thing we noticed was some inconsistencies between testbed layout (schematic shown in Figure 2a) 

specifications and model prescription. For example, DM1 was off pupil location (by design) by a large amount 

(~230mm).  While the error sounded significant, the improvement after this being corrected in testbed control model 

turned out to be insignificant in post EFC contrast (This was not totally surprising given the iterative nature of wavefront 

control to correct imperfections in a system).  

 

Another early focus was on better estimation of system low-order WFE (which mostly comes from shaped pupil mask 

manufactured). Some earlier modeling of testbed PSF versus focus scan behavior (in terms of PSF peak, peak-to-

sidelobe ratio, as well as PSF pattern) showed that the model was reasonably matched to testbed results only after 

incorporating a trial-and-error pupil WFE (comparable to testbed estimation). Better representation of this WFE in 

model would improve the match further, but trial-and-error was an inefficient way to find this knowledge.  However it 

was also difficulty to improve the pupil WFE estimation accuracy from phase retrieval measurement when a shaped 

pupil mask was in use which, as shown in Figure 2b, has small open area (its large dark horizontal area renders estimation 

of astigmatism difficult).  

 

Our effort was subsequently concentrated on examining the testbed Jacobian. Instead of merely spot checking on a few 

actuators as it had been done occasionally in the past, we called to perform a survey of as many active actuators as 

possible. The data collection was somewhat time consuming (about a weekend), but the result can give a better picture 

as to how well testbed matches the model prescription.  

 

In the following, after a brief explanation of Jacobian and its testbed measurement method, we present our analysis 

result of the collected testbed Jacobians. The significance of the Jacobian error (the difference between measured 

Jacobian and model Jacobian) is then modeled by inserting the error into a predication model. This is followed by 

modeling the potential sources of the Jacobian error. A summary and discussion is included afterward. 

 

2.  JACOBIAN IN EFC WAVEFRONT CONTROL AND TESTBED MEASUREMENT 
 

Most WFIRST coronagraph integrated modeling at JPL uses a PROPER based full diffraction model to compute image 

plane speckle pattern [6, 9], where beam is propagated from surface to surface according to their physical distances. 

High contrast imaging testbeds (HCITs) at JPL, on the other hand, uses a mostly FFT based (‘compact’) model to speed 

up control execution (the only Fresnel propagation used is from DM1 to DM2). Over the time, our prediction model for 

this work also used a compact version. Besides the computation time benefit, the main other reason was to simplify the 

comparison of Jacobian phase. Due to long Fresnel propagation and small beam size from Lyot stop to final camera 

location of the SPC tested optics layout, the electric field in the full model is modified by a strong off-the-center phase 

term, which has no effect on contrast.  

 

The wavefront control method in both model prediction and testbed used Electric Field Conjugation (EFC) algorithm to 

minimize image plane speckle pattern [10, 11]. The control matrix, typically termed Jacobian or G matrix, is a collection 

of Gk, the linear approximation of image plane electric field response to each actuator’s (pupil plane) unit strength poke 

(difference between poked field and base no-poke field):  
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where C denotes the linear coronagraph operator, Epup is pupil plane electric field, dm,k is kth actuator’s unit poke piston. 

In EFC algorithm G is commonly arranged by its real and imaginary parts of the electric field, pixel by pixel (of dark 

hole), and wavelength by wavelength (in broadband dark hole correction), in different rows; and actuator by actuator in 

different columns.  Weighting for emphasizing different part of dark hole or different wavelength can be applied to each 

individual Gk. Once G (the matrix collection of Gk) is established and dark hole field EDH is sensed, the DM correction 

needed at each iteration is then: 
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Often regularization  is added to damp the imperfect correction due to linear approximation to a nonlinear problem, 

imperfect sensing, as well as imperfect system calibration. One way of doing this can be: 
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How well the speckle field correction at each step depends on the accuracy of control Jacobian G matrix (or its inverse 

Ginv) and the accuracy of sensing EDH, and our focus in this paper was on the former (our another paper [12 ] focused on 

the later). In many close loop iterative control applications (e.g., adaptive optics), small imperfections in DM control 

mechanism may not be very important, as they will be corrected together with other system WFE given enough iterations. 

In high contrast coronagraph such as in WFIRST, where both achievable DH contrast floor and contrast convergence 

speed matter, tolerance in Jacobian imperfectness could be much tighter; high accuracy in Jacobian is key to achieve 

desired contrast floor in a reasonable amount of time.  

 

To measure the Jacobian Gk of each actuator, which contains both amplitude and phase, the simplest method is to use 

the same pair-wise DM probing scheme used for dark hole electric field estimation during wavefront control [11]: 

 
2 22/ *2
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where Pj is the probing field added to the existing to-be-measured DM poke field EG =C{ }, and Ij are intensities 

measured as a result of jth probe, either positive (+) or negative (-). From Eq. (4), one has:  

 4j j j jG PI I I E           (5) 

or in the form of matrix for N pair of probes [11]: 
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Here Pi are image plane field due to probe applied and are obtained by propagating the coronagraph model with the 

probing field.  One can then find the speckle pattern for each pixel with measured N intensity pairs based on Eq. (6). Gk 

is then obtained as the difference between poked field and base no-poke field. 

 

On SPC testbed, total of 3 pairs of positive-negative DM probes plus a no-probe images were used. This was to improve 

ill-conditioning due to noise in the inversion of Eq. (6) and to remove incoherent background. Also, instead of real and 

imaginary parts of Jacobian, the processed measured Jacobian data used amplitude and (wrapped) phase components of 

Jacobian. The reason was that the former was directly measured as                   , while the latter was derived from 

intensity measurement and Eq. (6).  
 

For control Jacobian, simple forward propagation of delta DM poke was calculated with the coronagraph propagation 

model based on Eq. (1). The result was also arranged into amplitude and phase, for easy comparison with measured 

Jacobian. 

 

3. TESTBED JACOBIAN ERROR AND ITS IMPACT ON CONTRAST  
 

3.1 Jacobian error distribution 

 

Using above method, a little over 700 (out of ~1200 total) actuators (that were considered strong enough) testbed 

measured Jacobian and control Jacobian were collected at near dark hole DM setting. Figure 3 shows an example of one 

actuator’s Jacobian, measurement versus its model.  Here we used two metrics to quantify the Jacobian error: difference 

in mean amplitude over dark hole region in percentage (upper rightmost in Fig. 3), and difference in phase (in x and y 

components) as tilt gradient (per/D). Collect each actuator’s error and compose them according to their locations, we 

have a distribution of testbed Jacobian error 2D map as shown in Figure 4. 
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Ignoring the edge actuator errors (which tend to be unreliable due to weak response caused large measurement error), 

we saw that both DMs’ measured Jacobian amplitudes were about ~25% lower than expected on average. On the phase 

part, the error was roughly on the order of 0.05 rad per /D, and the distribution was not of random nature but of certain 

pattern, indicating possible systematic error in control Jacobian.  

  
Figure 3. An example of testbed measured Jacobian and its model version:  top row shows amplitudes and 

their difference, (meas-model), and in percentage of difference (pct), (meas-model)/model. Bottom row shows 

phases and their difference (in rad).  Tilt values are estimated phase difference gradient (per D) of x and y 

components. Also shown the actuator location being poked (red dot) against all active actuators (light blue) 

  

 

Figure 4. Jacobian error distribution arranged in actuator’s DM location. Upper row: DM1; bottom row: DM2. 

Left column: amplitude error in % (pct); right two columns: phase error gradient per/D of x and y components    
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A little note here: though the Jacobian as measured was close enough to its model version for actuators in open area, 

most actuators at edges (and for WFIRST SPC there are many of these, due to SPM’s many thin edges, see Figure 2b) 

were noisy in raw data and deemed not reliable.  It is therefore infeasible to directly use measured Jacobian for actual 

wavefront control (which would alleviate all the mismatch problem). Nevertheless, the measurement did paint a global 

picture of Jacobian error that can offer many clues to testbed problem. 
 

3.2 Impact of Jacobian error on contrast floor and contrast convergence 

 

With the Jacobian error as described above: about ~25% in average amplitude mostly underrepresented in control model, 

and a phase error in tilt gradient on the order of 0.05 rad per /D, our first question was if the observed Jacobian error 

significant in limiting testbed contrast? 

 

To answer this, we imported the Jacobian error into a separate predication model to see its impact on contrast 

performance.  We adjusted each of our prediction model’s nominal Jacobian, Gk, to carry the testbed error as: 
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That is, its amplitude was scaled down (pctk is the percentage error shown in left column of Figure 4, and its phase was 

modified by adding the phase error (the x- and y- components of tilt gradient of right two columns of Figure 4.  Any 

actuators whose magnitude errors exceed 2in error histogramwouldremain unadjusted in magnitude. Similarly, any 

actuators whose phase errors exceed 2remain unchanged in phase. This was to minimize impact caused by spurious 

measurement error. 

 

We then carried out EFC wavefront control with above error ridden Jacobian and an estimated low-order pupil WFE of 

~60nm rms (estimated from fitting PSF focus scan data). The WFE has Zernike coefficients roughly at a level of/10 

RMS or /2 PV for focus and astigmatism terms: Z4~Z7 = [-45 -40 -10 2] nm rms, comparable to testbed estimation.  

 

The result, as shown in Figure 5, strongly suggested that the level and nature of Jacobian error could be largely 

responsible for the observed SPC testbed contrast behavior: when both amplitude and phase error included, the 

prediction model took about ~120 iterations to reach a contrast floor about 8x10-9, similar to MS5 testbed result [3, 4], 

compared with a no-error nominal model which would need only ~ 40 iterations to reach 2.4x10-9 contrast. The trial-

and-error optimal regularization that gave the best EFC result was found to be  =1.2x10-2, also very close to what 

testbed found and used. 

 

  
Figure 5. Impact of observed Jacobian error on SPC testbed contrast: a) The Jacobian error appears to set the contrast 

floor as well as its convergence speed. b) The final contrast has similar wavelength dependency to MS5 result. 
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It is worth noting that, the amplitude error, which was thought to be relatively easy to fix, mostly slowed down the 

contrast convergence but did not appear to be contrast floor setting.  In other words, to improve contrast floor, it is more 

important to minimize Jacobian phase error as much as possible. 

 

4. SOURCES OF JACOBIAN ERROR  
 

Given the significance of Jacobian error on dark hole contrast, our next question was what led to these errors? This is 

harder to answer but important if we were to improve our testbed result, which is the ultimate goal. Here we present 

some analysis that provides some clues to this question. 

 

4.1 Jacobian phase error and DM registration offset  

 

One naturally links Jacobian phase error to DM offset, since image plane phase tilt is related to pupil plane displacement 

by (the two are Fourier Transform pair):  
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We can easily convert the Jacobian phase error into DM registration error. The result is shown in Figure 6, where left 

two columns are the cleaner version of the right two columns of Figure 4 (with outliers >2 removed) but now in unit 

of um. The mean (absolute) offset magnitude is over ~200um (while mean rigid DM misalignment ~150um), about 

testbed alignment uncertainty range.  

 

 
Figure 6. DM registration error derived from Jacobian phase error: left two columns are actuator x- and 

y- offset in um (from calibrated grid map); right column is a (upside down flipped) offset quiver plot  

 

If we treat DM registration offset as a result of a wavefront slope, we can reconstruct its corresponding “WFE” through 

a Shack-Hartman method. The result is shown in Figure 7, which can be thought of the impact distribution of individual 

actuator misregistration on Jacobian phase modification. Again, both DMs show large mean shift, and some focus and 

astigmatism. 

 

While it is straightforward to link Jacobian phase error to DM offset, understanding the full reason for the offset is little 

trickier than it appears to be. The tip/tilt in the phase error (or the mean x- and y- shift in converted DM offsets) can be 

readily interpreted as misalignment of rigid DM vs pupil, which were roughly at level of 5~15% actuator unit 

(50~150um).  In fact it was verified that there was a shift in DM registration after shaped pupil mask (SPM) replaced 



its surrogate flat (DM registration data was taken with a flat in place of SPM) due to 1 mm thickness difference between 

SPM and the surrogate flat.  On the other hand, the focus (the equivalent grid spacing change) and astigmatism terms in 

DM offset “WFE” were not entirely understood, except that they were unlikely from actual physical grid distortion. We 

suspected that they could be related to testbed WFE (which contains some focus and astigmatism terms) and its DM 

LOWFE setting (see Sect 4.2 below). More modeling works are needed to precisely answer this.  

 

 

Figure 7. Impact distribution of DM registration error on Jacobian phase. Left:  full impact; 

right: mean shift and grid spacing error (tip tilt focus) removed  

 

4.2 Jacobian magnitude error and system WFE and LOWFE DM setting 

 

For amplitude error, the natural first reaction was to look more carefully over DM gain calibration. Small inconsistency 

in photometric normalization was found in testbed control model. Then influence function for DM2, which was assumed 

to be the same as DM1 but never actually measured, was updated which turned out to be slightly different from (fattier 

than) that of DM1. Early Jacobian measurement data itself was also discovered to be unreliable, particularly DM2, due 

to the use of large poke voltage (20 Voltage measurement unit (VMU), equivalent of 80nm poke piston, in an effort to 

boost measurement accuracy for weak actuators), which caused saturation and strong nonlinearity. After discovered this 

and reduced poke voltage to 2VMU, the measured Jacobian of actuators in open area were of much reasonable quality 

(at the price of edge actuators’ quality).  

 

However, after all these corrections and improvement, we were still not able to explain the level of Jacobian amplitude 

off seen in the Jacobian data shown in Fig.4, and decided to check if DM’s LOWEF setting to correct system WFE has 

any effect.  
  

Recall that in Eq. (1), Jacobian is a linear approximation of image plane electric field response to pupil plane unit 

strength DM poke. It is often calculated with WFE free version of coronagraph propagation in model and with an 

assumption that the poke strength is small (which we term it nominal Jacobian in this paper).  When there is non-

insignificant DM stroke set to correct system pupil WFE, the true Jacobian could differ from its no WFE small poke 

version where linearity approximation holds better. At a larger WFE pup and a corresponding DM setting dm,w case, 

instead of linear approximation in Eq. (1), one would now have:   
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after omitting third order or higher terms as well as second order term dm,k (dm,k is much smaller compared with w 

and pup for a large WFE case). dm,w would partially cancel out pup (the two have opposite sign in general) but not fully, 

even when Jacobian is calculated or measured when dark hole is nearly reached; since the goal in coronagraph is not to 

minimize pupil WFE but to redistribute (the high order component of) it such that it will result in a desired dark hole 

region in image plane. Often Jacobian is calculated or measured far from the coronagraph reach to the dark hole solution. 

In any case the second term in Eq. (9) will change Jacobian amplitude and its phase relative to its nominal version. Since 

dm,k is zero except the kth actuator being poked (for Jacobian purpose), only local values of dm,w, pup  matter (although 

in reality actuator has a finite span of influence function, but for this analysis we use a delta like influence function for 

simplicity). Their effect is to add approximately a (quadrature phase shifted) copy of (nominal) field response with an 

attenuated amplitude, whose attenuation is roughly proportional to the residual of the imperfect DM cancellation to 

pupil WFE at kth actuator location
,pup dm w  . And Jacobian amplitude error (in percentage) relative to its nominal one 

would be:  
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The nominal Jacobian phase will be modified by a phase term related to this residual also: 

,ph pup dm werr        (11) 

Figure 7 shows the difference between the nominal Jacobian and Jacobian with estimated testbed WFE and its initial 

DM setting incorporated. The percentage change in Jacobian amplitude between these two, is at the level of around 20% 

on average, roughly matching observed amplitude discrepancy. Note however, Jacobian amplitude error could be further 

aggravated if this residual is coupled with DM registration error. 

 

Figure 7. Amplitude difference (in %) in a nominal Jacobian and a Jacobian incorporating estimated testbed pupil 

WFE and its initial DM setting. At a level of 25% on average, it roughly matches observed amplitude discrepancy. 
 

From a dynamic perspective, the high order residual WFE after initial flattening (low order WFE control) tends to 

change little in magnitude as EFC iteration goesdm,w is mostly to redistribute pup after low-order WFE flattening). 

However, the reshape or redistribution of its content could change individual Gk substantially. Traditionally prediction 

model calculates Jacobian once and does not dynamically update it during EFC run to reflect DM change. This may not 

matter for well-built system with small high order WFE. If there is large high-order WFE in coronagraph, it is better to 

include WFE and its DM setting in the Jacobian calculation and update them along the way to match to the true Jacobian 

both at the beginning and during EFC iterations. 

 

On SPC testbed the control Jacobian was dynamically updated with DM setting (~ every few iterations) but did not 

include the low order SPM WFE at the time of MS5. This would lead to control Jacobian amplitude error roughly as: 

DM1 DM2 
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For an estimated testbed WFE of 60nm rms, or pup = 0.7 rad, the amplitude error is then roughly at 22%, very close to 

what was observed. The phase error would be roughly proportional to pupil WFE: 

,ph TB puperr        (13) 

This suggests that the testbed Jacobian phase errors, as shown in Figs. 4 and 6, could be reflecting testbed WFE in 

certain way, since both DMs’ Jacobians phase errors contain focus and astigmatism terms. However, currently we do 

not fully understand the apparent mismatch in magnitude (both are smaller than Eq. (13) predicted) and sign change. 

One possibility of the mismatch could be the bias error in measurement. Unlike amplitude which was “direct” 

measurement, the Jacobian phase part was model-derived measurement.  When system WFE and its DM setting are 

large enough but not fully included in estimation model, it could introduce significant bias error in measurement and 

thereby “distort” the true Jacobian error.  More work is needed to better understand the origins of the Jacobian phase 

and amplitude errors. 

 

5. SUMMARY AND FUTRUE WORK  
 

We developed a very useful tool to diagnose testbed imperfections and close contrast gap between testbed and model 

prediction for high contrast coronagraph. Our analysis and modeling of SPC testbed Jacobian error strongly suggests 

that the error in the control Jacobian, about ~25% in amplitude, and 0.05rad per /D in phase, appears to be limiting the 

contrast floor and affecting contrast convergence observed on SPC testbed. Two most likely main sources of these errors 

come from, among others: 1) failure to fully include WFE and its corresponding DM setting in the model when they 

were modestly large, and 2) failure to include DM registration error. For high contrast coronagraph, the Jacobian has a 

much tight tolerance in its imperfection than we initially assumed: a system WFE as small as /10 rms could derail 

nominal Jacobian from linearity approximation; a DM registration error at a level of ~200um mean (absolute) offset (or 

a rigid DM misalignment at about 50~150um) could degrade its speckle suppression ability significantly, especially 

when coupled with system WFE. However, more careful modeling work needed to better understand the focus and 

astigmatism terms in Jacobian phase error seen. 

 

Modifications to both testbed control model as well as prediction model are being implemented and continually evolving. 

According to Eq. (9), accurate control Jacobian depends on good representation of both system WFE and the DM setting, 

pup anddm,w. On testbed DM piston was already regularly updated around the time of MS5 passage but not its 

misregistration nor the system WFE. After the Jacobian study, a static WFE was included in the control model. It would 

be better if we could include DM misalignment in the model and update WFE dynamically also if possible (if the initial 

WFE measurement not accurate enough). Similarly prediction model could do better if it dynamically updates Jacobian 

to reflect DM setting change during EFC iteration for large WFE case.  

 

Due to decommissioning of the original shaped pupil testbed at JPL shortly after the passage of the Milestone 5, however, 

we were unable to conduct more test cases afterward to firmly validate this. Nevertheless, the approach described in this 

paper represents a fresh direction to pursue model validation for high contrast coronagraph, a required technology 

readiness for a proposed NASA WFIRST mission. At the time of this paper’s submission, a new dynamic Occulter Mask 

Coronagraph (OMC) testbed, which will be used for both future SPC and HLC test in static as well as dynamic 

environments, is near ready to start speckle nulling. Once fully operative, we will iteratively repeat Jacobian survey and 

model validating our findings with new data. In addition to incorporating Jacobian error into prediction model for 

prediction as we have been doing, we also intend to incorporate Jacobian error back into control model (if unable to 

correct the Jacobian error) and check its benefit in performance enhancement. 

 

Another potential future improvement is to use alternative phase estimation technique. As noted in Sect 4.2, the 

“measured” Jacobian is in reality a model-dependent measurement: specifically, the Jacobian phase is currently obtained 

through both intensity measurements AND the coronagraph model itself (the amplitude part can be estimated through 

pair of intensity measurements without model).  The result is that the measured data reflects only “relative” error when 

compared with testbed’s control model. Using the same pair-wise DM probe for wavefront control is one most 



convenient method (no additional hardware and/or hardware translation needed). In small WFE and LOWEF DM setting 

case, where linearity approximation holds better, the system bias from such model depend measurement may be limited. 

In large WFE and its corresponding DM setting case, this model-dependent measurement could potentially miss out 

significant bias error. It is possible to use other phase measurement techniques such as Phase Retrieval or sets of pinholes 

near Lyot stop edge [13 -14]. PR is already in extensive use on testbeds (though is extremely time consuming), and 

pinhole at Lyot stop edge was also demonstrated previously. Both could be a viable alternative to existing model-

dependent Jacobian phase measurement.  
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